Short Text Clustering via Convolutional Neural Networks

نویسندگان

  • Jiaming Xu
  • Peng Wang
  • Guanhua Tian
  • Bo Xu
  • Jun Zhao
  • Fangyuan Wang
  • Hongwei Hao
چکیده

Short text clustering has become an increasing important task with the popularity of social media, and it is a challenging problem due to its sparseness of text representation. In this paper, we propose a Short Text Clustering via Convolutional neural networks (abbr. to STCC), which is more beneficial for clustering by considering one constraint on learned features through a self-taught learning framework without using any external tags/labels. First, we embed the original keyword features into compact binary codes with a localitypreserving constraint. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, with the output units fitting the pre-trained binary code in the training process. After obtaining the learned representations, we use K-means to cluster them. Our extensive experimental study on two public short text datasets shows that the deep feature representation learned by our approach can achieve a significantly better performance than some other existing features, such as term frequency-inverse document frequency, Laplacian eigenvectors and average embedding, for clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Taught convolutional neural networks for short text clustering

Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw...

متن کامل

Combination of Convolutional and Recurrent Neural Network for Sentiment Analysis of Short Texts

Sentiment analysis of short texts is challenging because of the limited contextual information they usually contain. In recent years, deep learning models such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been applied to text sentiment analysis with comparatively remarkable results. In this paper, we describe a jointed CNN and RNN architecture, taking advant...

متن کامل

Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks

Recent approaches based on artificial neural networks (ANNs) have shown promising results for short-text classification. However, many short texts occur in sequences (e.g., sentences in a document or utterances in a dialog), and most existing ANN-based systems do not leverage the preceding short texts when classifying a subsequent one. In this work, we present a model based on recurrent neural ...

متن کامل

Semantic Clustering and Convolutional Neural Network for Short Text Categorization

Short texts usually encounter data sparsity and ambiguity problems in representations for their lack of context. In this paper, we propose a novel method to model short texts based on semantic clustering and convolutional neural network. Particularly, we first discover semantic cliques in embedding spaces by a fast clustering algorithm. Then, multi-scale semantic units are detected under the su...

متن کامل

A Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction

We improve automatic correction of grammatical, orthographic, and collocation errors in text using a multilayer convolutional encoder-decoder neural network. The network is initialized with embeddings that make use of character Ngram information to better suit this task. When evaluated on common benchmark test data sets (CoNLL-2014 and JFLEG), our model substantially outperforms all prior neura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015